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Abstract--The effective transversely isotropic moduli of two hybrid composites containing both
partially debonded and perfectly bonded spheroidal inclusions are derived. In this derivation a
fictitious, transversely isotropic inclusion is introduced to replace the isotropic, partially debonded
one so that Eshelby's solution ofa perfectly bonded inclusion could be used. [Eshelby, J. D. (1957).
The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc.
London A241, 376-396]. Two types of debonding configuration are considered: the first type occurs
on the top and bottom of the oblate inclusions and the second one exists on the lateral surface of
the prolate inclusions. Albeit approximate, the method is simple and capable of providing explicit
results for the five independent moduli in terms of the volume concentrations and aspect ratio of
the partially-debonded and perfectly-bonded inclusions. The results are given for the spherical and
various inclusion shapes. It is shown that, with spherical inclusions, the longitudinal Young's
modulus Ell and axial shear modulus 1112 in type I, and the transverse Young's modulus E22 , plane­
strain bulk modulus k", and the axial and transverse shear moduli in type 2, can all be greatly
affected by partial debonding. Examination on the influence of inclusion shape indicates that disc­
shaped inclusions in the first type and prolate ones is the second type lead to stronger moduli
reduction than spheres. Copyright '(') 1996 Elsevier Science Ltd.

1. INTRODUCTION

This paper is concerned with the determination of the effective elastic behavior of two
partially debonded composites. When a particle-reinforced composite is subjected to a
uniaxial tension, interfacial debonding on the top and bottom of the interface may take
place, but when the system is subjected to a transverse biaxial tension interfacial debonding
may take place on the lateral surface. The debonded inclusion will lose its load-carrying
capacity in the debonded direction, but as it remains perfectly bonded in the other directions
it is still capable of transmitting stress to the matrix. While with homogeneously dispersed,
perfectly-bonded spherical particles, the overall system is isotropic, it becomes transversely
isotropic after either of such partial debondings. This is necessarily so with aligned sphe­
roidal inclusions. Our objective here is to derive the five transversely isotropic effective
moduli for both types of partial debonding.

A schematic diagram of such an idealized system is shown in Fig. I (a) for the first type
and in Fig. 1(b) for the second one, where the symmetric direction of the spheroidal
inclusions is identified as direction 1. The matrix and inclusions are referred to as phase 0
and 1, respectively, and the volume concentration of the roth phase is denoted by Cr

(('0+c 1= I). We further divide the inclusions into two groups: the perfectly-bonded par­
ticles and the partially debonded-or damaged-ones, and denote their respective volume
concentrations by cp and c" (cl'+(''' = Cl)' For simplicity both phases will be taken to be
isotropic, so that the elastic moduli tensor of the roth phase L" can be represented by its
bulk and shear moduli as
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ferential side of the prolate inclusions
Fig. I. Schematic diagram of a hybrid composite with two types of partial debonding.

L, = (3K" 211,), (1.1)

in Hill's (1965) short-hand format. The corresponding Young's modulus and Poisson's
ratio are denoted by E, and V,.

While spherical inclusions represent the most common particle shape, inclusions of the
oblate and prolate shapes aligned along direction I are also of some fundamental interest.
However, to meet the requirement in the present model that a partially debonded particle
will lose its tensile load-carrying capacity along the debonded direction, the prolate shape
should be excluded from consideration in the first type and the oblate shape be excluded in
the second one. This is in light of the fact that such a partially-debonded inclusion may still
carry significant axial tensile stress in the first type, especially so when the inclusions take
the shape of a long needle. This is equally so for the second type when the inclusions become
very flat. Thus we shall give a detailed examination for spherical particles first, and then
consider the problem for only aligned oblate inclusions for the first type, and aligned prolate
inclusions for the second one. The focus there will be on the influence of aspect ratio (X

(the thickness-to-diameter ratio) of the spheroidal inclusions on the transversely isotropic
moduli of the partially debonded system.

Other types of interfacial damage may also affect the overall moduli. For instance with
sliding inclusions Jasiuk et al. (1987) and Shibata et al. (1990) have found that the effective
shear modulus can be greatly reduced by such a process.

2. A FICTITIOUS TRANSVERSELY ISOTROPIC INCLUSION AND THE EFFECTIVE
MODULI OF THE PARTIALLY DEBONDED COMPOSITE

Effective elastic moduli of a perfectly bonded composite can be examined by various
micromechanical models; a discussion and comparison among the three widely used ones­
Mori and Tanaka's (1973) method (M-T), the differential scheme (DS), and Christensen
and Lo's (1979) generalized self-consistent model (GSC)---can be found in Christensen
(1990) for the cases of spherical particles and aligned circular fibers. Christensen pushed
the comparison to the very high concentration range for the transverse shear property with
rigid inclusions, for both compressible and incompressible matrix. His primary findings for
the transverse shear modulus are: (i) the GSC is the most accurate one among the three,
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(ii) with compressible matrix M-T provides a result very close to that ofGSC whereas OS
leads to a substantially stiffer response, and (iii) with an incompressible matrix OS is too
soft and M-T is even softer. For the bulk modulus it is well known that both GSC and M­
T coincide, while the estimate by OS remains too stiff.

Due to its versatility that the inclusion shape can be accounted for explicitly, the Mori­
Tanaka method will be used here, but for the transverse shear property it must be restricted
to a compressible matrix. However for the present problem, as the inclusion-matrix interface
for the debonded regions is not perfectly bonded, Eshelby's (1957) solution can not be
applied directly in Mori-Tanaka's approach. To circumvent this difficulty, we note that,
for the first type of debonding configuration the debonded regions on the top and bottom
of the inclusion can not transfer both tensile and shear stress (in an average sense), and
therefore if the isotropic debonded inclusion is replaced by a fictitious transversely isotropic
one with a property that its average tensile stress 0"11 and shear stresses 0"12 and 0"13 will
always be zero, then this fictitious inclusion can be treated as an ordinary bonded inclusion.
Similar argument can be made on the lateral surface for the second type, but in both cases
a new transversely isotropic elastic property must be assigned to the fictitious inclusion.

In dealing with a transversely isotropic material, such as this newly introduced inclusion
or the overall, partially debonded composite, it is convenient to use Hill's (1964) stress­
strain relations

(1)

where direction I is symmetric and plane 2-3 isotropic. Then, in Walpole's (1969) short­
hand notations, the transversely isotropic elastic moduli tensor can be written as

L = (2k, l,r, n, 2m, 2p).

Since tensor L is diagonally symmetric (l = t), it can be further shortened to

L = (2k, I, n, 2m, 2p).

When the system is isotropic, it reduces to

L = (2k, k- j.1, k+ j.1, 2j.1, 2j.1),

where k is the plane-strain bulk modulus (k = /( + j.1j3).

(2)

(3)

(4)

2.1. Debonding on the top and bottom of the oblate inclusions (:x ~ I)
In order to find the five elastic moduli for the fictitious, transversely isotropic inclusion,

we first return to the isotropic, debonded inclusion, with the moduli cast in the form of (4)
but with a subscript 1. Since 0" 11 = 0, one has

(5)

To ensure the equivalence between the original, partially debonded isotropic inclusion
and the fictitious, perfectly bonded transversely isotropic inclusion, the elastic moduli of
this inclusion, to be denoted by
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12 = 0, n2 = 0,

k
2

= III (3k l - Ill)

k l +111 '

(6)

(7)

which further implies that its tensile Young's modulus EW = 0 and its transverse Young's
modulus EW = E 1•

2.2. Debonding on the lateral surface of the prolate inclusions (IX ~ I)
In this case debonding takes place on the lateral 2-3 surface so that (J22 = (J33 = O. It

follows that

(8)

Furthermore, the aligned prolate inclusions also carry no shear stress, (J12 = (J23 = O. Thus,
the five components of the moduli of the fictitious transversely isotropic inclusion are

(9)

which also implies that its longitudinal EW = E1 and transverse Ei2d = O.
For both types of partial debonding the problem now reduces to a hybrid composite

containing two kinds of identically shaped inclusions, one being isotropic and the other
transversely isotropic. The M-T moduli tensor for this class of composite has be derived by
Weng (1990), as

(10)

in symbolic notations, where the summation L is extended to all three phases, and, in term
of Eshelby's S-tensor

(11 )

which is the strain concentration tensor of an ellipsoidal inclusion embedded in an infinitely
extended matrix. The inner product of two tensors here is given as LA = Li;k,Ak'mn- This
effective moduli tensor satisfies the diagonal symmetry (l = l') and, as proved by Weng
(1992), it always lies on or inside Willis' bounds (1977).

All the tensors in (10) and (11) can be cast in the transversely isotropic form as in (I)
and (2), and for the S-tensor, it is

(12)

noting that SII22 of. S2211' unless the inclusion becomes spherical. The inner products and
inverse of the transversely isotropic tensors also result in a transversely isotropic tensor;
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its six components-in the form of (2)----can be readily evaluated following Walpole's
(1981) procedure. It follows that the five effective elastic moduli are given by

k = [{ko[SIll I (S2222 + S2233 - I) - 2S1122S2211 ] + (ko- I-lO)SII22}(al a4- 2a2a3)

+ko[1 + (S2222 + S2233 -I)al + SIll 1a4 + 2(S1122 a3+ S2211 a2)]

- (ko- I-lO)a2]/a,

1= [{(ko- I-lO)[Sllll (S2222 + S2233 -I) - 2S1122 S22I d + (ko+ I-lO)SI122}

x (al a4- 2a2a3) + (ko- I-lO)[(S2222 + S2233 -I)al + 2S1122a3 + 2S2211 a2

+Slllla4 + 1] -(ko + l-lo)a2]

n = [{ (ko+ I-lO)[(Sllll -I ) (S2222 + S2233) - 2S1I22S 2211] + 2(ko- l-lo)S22I d
x (al a4- 2a2a3) + (ko+ 110)[(Sllll -1)a4 + 2S1122 a3 + 2S2211 a2

+ (S2222 +S2233)aj + I] - 2(ko- l-lo)a3]/a,

(13)

where

a = [SIll 1(S2222 + S2233) - 2SII22S221 d(al a4- 2a2a3) + [(S2222 + S2233)a l

+ SIll 1a4+ 2S1122a3 + 2S2211 a2 + I], (14)

for both types of debonding sketched in Fig. 1. The constants a l •.. a6, however, are
different, and are given in the Appendix. The tensile Young's modulus Ell, major Poisson's
ratio V12 and transverse Young's modulus En ( = E33) are in turn given by

Ell = n-12/k, V l2 = 1/2k,

4k23E,o = ~~~~~~~~~
"~ k23/1-l23+I+4vi2k23/EII'

(15)

with the engineering constants k23 = k, 1-l23 = m, and 1-l12 = p.
We note in passing that, in order to apply the Eshelby-Mori-Tanaka theory to the

present problem, replacement of the partially debonded isotropic inclusions by a perfectly
bonded, transversely isotropic inclusion is a necessary step. If one were to invoke the
condition 0'11 = 0 in the first type (or 0'22 = 0'33 = 0 in the second one) and still keep all the
isotropic constants for the debonded inclusion in the 2 and 3 directions (or I-direction in
the second type), the derived overall moduli tensor would become asymmetric.

3. SPHERICAL INCLUSIONS

The preceding results can be simplified for spherical inclusions by invoking the values
of S-tensor. After some lengthy algebra, we arrive at

k = ko{ (I + vo)(l - 2vo)(13 - 15vo)(al a4- 2a2a3) + 3(1- vo)[3(3 - 5vO)a l

- (7 - 5vO)a4 + 2(1- 5vO)a3 - 2(15v~ - lOvo- I)a2 -I5(1-vo)]} /a,

1= 2ko{(I + vo)(1 - 2vo)(3 - 5vo)(a, a4- 2a2a3) + 3(1- vo)[3(3 - 5vo)voal
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- (7 - SvO)vOa4 +2(1- SVO)VOa3 + (S - vo)(3 - SvO)a2 - IS(1- vo)vo]) la,

n = - 2ko(1- vo){ - 10(1 +vo)(l- 2vo)(a1 a4- 2a2a3) +3(1- vo)[6a j

-2(4-SvO)a4-2(1 + IOvo)a3-2(I-SvO)a2 + IS(1-vo)]}/a,

m = )10[1- I + 2as(4-S::)/(1-Vo)/IS],

(16)

a = - 2(1 +vo)(4- Svo)(a[ a4- 2a2a3) +3(1 - vo)[ - 6a[ - (7 - SvO)a4

+2(1-SvO)(a2+a3)-IS(1-vo)], (17)

and a), ... a6 are also given in the Appendix.
In the above equations, both perfectly bonded and partially debonded inclusions

coexist, and they apply to both types of debonding configuration in Fig. I. These two
configurations are now considered separately.

3.1. Debonding on the top and bottom of the spherical inclusions (IX = I)
First we simply these results for the important case when all inclusions are in the

partially-debonded state (Cd = C), cp = 0) :

{ [
El Eo J(13-ISvo)(1+vo)c6 -1---1- +3[IS(1-vo)
-Vj -vo
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(18)

with E22 given by (15), if needed.
At this point it is appropriate to point out that Taya (1981) was probably the first to

use Mori-Tanaka's method to address the first type of the partially debonded problem, but
only for rigid inclusions. This early study was concerned with the void growth at the
interface of rigid particles in a Newtonian matrix. As the inclusion was rigid he further
made use of the condition £22 = £33 = 0 in the transverse directions. Subsequently, Mochida
et al. (1991) also used this approach to find the longitudinal Young's modulus Ell of the
hybrid composite containing spherical inclusions, but in the process they treated the
debonded elastic inclusions as rigid particles while maintaining the perfectly bonded
inclusions to be elastic. Consideration of rigid inclusions can greatly simplify the problem,
as in the case £22 = £33 = 0 and there is no need to introduce a fictitious transversely isotropic
inclusion to replace the isotropic one. The idealization of a debonded elastic inclusion by a
rigid one, however, is bound to cause an error; such an error largely depends on the elastic
modular ratio of the inclusions to the matrix. For instance, assuming both VI = Vo = 1/3
and a total inclusion concentration of Cj = 0.2, the normalized EIIIEo for the hybrid
composite as calculated by the present theory and their method are shown in Fig. 2, as a
function of Cd at five selected EIIEo ratios. When the inclusions are indeed rigid, both
approaches coincide with each other. In general their approximation is reasonable in the
region of high EdEo and low Cd, but at low EllEo and high Cd it must be used with caution.

1.4

1.2

1.0

0.8

--- present theory

_._._.- Mochida,Taya & Obata (1991)

t 1
v 1=vo=1/3e c1=O.2
a=1

M ~

0.00 0.05 0.10 0.15 0.20

Fig. 2. An assessment of Mochida et a!.'s rigid-inclusion approximation.



500 Y. H. Zhao and G. J. Weng

E"lEo E2/Eo
2.4

a=1 • 1 a=1
2.0 , cjc,=O

O. 2.0

1.5

1.6

1.0

1.2

0.5
C C,

0.0 0.1 0.2 (a) 0.3
0.5 1 0.0 0.1 0.2 0.3 0.4 0.5

(b)

~Jko V,/Vo
1.0

a=1

0.8
1.80

0.6

1.40

0.4

a=1
c,

o·~.o
C,

0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(c) (d)

~!Ilo jJ.,/l!o

a=1 a=1

2.0 cjc,=O
2.0

O.
1.5

1.5
1.0

0.5

1·~.0 0.1 0.2 0.3 0.4 0.5c, 0.0 0.1 0.2 0.3 0.5
C

,

(e) (f)

Fig. 3. The transversely isotropic moduli of a hybrid composite containing spherical inclusions
partially debonded on the top and bottom.

We now examine the influence of volume concentration Cd of the partially debonded
particles on the five transversely isotropic effective moduli Ell' E22 , k23 , 1l23' 1l12' and the
major Poisson's ratio V12' The calculations were based on the properties of E l = 10Eo and
VI = Vo = 1/3, and the results are shown in Fig. 3 (a)-(f). In each figure five selected ratios
of Cd/CI have been considered, such that CJiCI = 0 corresponds to the ordinary two-phase
composite with perfect bonding and Cd/CI = I refers to a two-phase system with only
partially debonded particles. For Ell, the total inclusions would continue to strengthen the
system even with 30% of the total particles in the partially debonded state, but as the
fraction increases beyond 50% the system will weaken. Such is also the case with 1l12' The
moduli E22 and 1123 are totally insensitive to partial debonding. The plane-strain bulk
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modulus also increases with increasing CI regardless of the cdlc l ratio, but this ratio now
plays a clearly discernible role.

3.2. Debonding on the lateral surface of the spherical inclusions (:x = 1)
When all the inclusions are in the partially debonded state (Cd = C], cp = 0), equations

(15) and (16) can be simplified to yield the following five effective engineering moduli :

k 23 = koco{[6 +5(1 - v~)(l- 5vo)](E1 - Eo)co +5(1- vo)(4-4vo - 5v6)Eo} I

{3(3 - 5vo)(EI - Eo)C6 -¥(1- VO)2 Eoci - 5(1- vo)(4-4vo- 5V6)E I co},

+5(1- vo)(4-4vo- 5v6)Eo},

(7 - 5vo)co
(19)

Returning to the hybrid composite at the same five selected cdl ('1 ratios, the effective
moduli are given in Fig. 4. As debonding now occurs on the 2-3 lateral surface, E22 , kn , fJ.23

and fJ.12 are all visibly affected by an increasing cdlc] ratio. The longitudinal Young's modulus
Ell-similar to E22 in Fig. 3-is the sale quantity not disturbed by this partial debonding.

To place the influence of both types of partial debonding in proper perspective, we
plot in Fig. 5 the effective moduli of the two-phase composite under the four bonding
conditions: (a) perfect bonding, (b) partial debonding on the top and bottom, (c) partial
debonding on the lateral surface, and (d) complete debonding, with no perfectly bonded
particles in (b) and (c). The moduli given in Fig. 5 (a), except for V12 ' all increase with
increasing particle concentration, whereas those in Fig. 5 (d) all decrease, as expected. As
the system is isotropic in both cases, these five components also satisfy the usual isotropic
connections. The results for both types of partial debonding are seen to lie between the
two. In Fig. 5 (b) both Ell and /112 decrease with increasing debonding, with J123' E22 and
kn still exhibiting the stiffening effect, and in Fig. 5 (c) all the three transverse moduli are
seen to decrease, with only Ell showing a strengthening effect.

4. THE INFLUENCE OF INCLUSION SHAPE :x ON THE EFFECTIVE MODULI

4.1. Debonding on the top and bottom of the oblate inclusions (:x ~ I)
The influence of inclusion shape-or the aspect ratio :x of the oblate inclusions-is

shown in Fig. 6. In each curve four selected shapes have been studied, ranging from spheres
to thin discs with :x = 0.1. This set of results has been calculated from (13), again using the
properties EllEo = 10 and VI = Vo = 113. All are under a total inclusion concentration of
C1 = 0.2, with the debonded portion again represented by CU' The condition Cd = 0 cor­
responds to the perfectly bonded two-phase composite, and as Cd increases from 0 to 0.2,
each of these five moduli also decreases. The reduction is most dramatic in Eli' k23 and fJ.12,

and for E J 1 and fJ.J2 disc-shaped inclusions are seen to cause a more pronounced weakening
effect. The influence of Cd on E22 and /123 is not visible and the debonded inclusions can be
effectively treated as perfectly bonded ones. For these moduli discs provide a stronger
reinforcement than spheres.
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Fig. 4. The transversely isotropic moduli of a hybrid composite containing spherical inclusions
partially debonded on the circumferential side.
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Fig. 5. Comparison of the effective moduli of a two-phase composite containing spherical particles
under four kinds of interfacial bonding.
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Fig. 6. Influence of inclusion shape on the transversely isotropic moduli of a hybrid composite
containing oblate inclusions partially debonded on the top and bottom.

4.2. Debonding on the lateral surface of the prolate inclusions (a ~ 1)
In this case the four selected inclusion shapes are a = 1, 2, 3 and 5 and the results are

given in Fig. 7. Consistent with the results of spherical inclusions, the four transverse
moduli all suffer a visible reduction as Cd increases. Prolate-shaped inclusions also lead to a
greater reduction in these effective moduli than the spherical ones. The only modulus not
affected in any significant way is £1 b for which prolate inclusions with a greater aspect ratio
also give rise to a stiffer response.
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APPENDIX: CONSTANTS al"a6 IN (13) AND (16)

These constants are given by

aJ = c"h I + c"h" a4 = c"d, + c"d"

a, = CpCI +c"c" a" = CFt'1 +c,/" (A,I)

where c" and c" are the volume concentrations of the perfectly bonded and partially debonded inclusions,
respectively, In this equation

CI = {-2[3(k , -kll)-C/el-llo)](1l1 -IlII)S" " +2(3kll -llo)llo

-2(k IPII-t-koIlJl-2(k l -IlJlllo}/b
"

ql = {2[3(k , -ko)-(Il, -llo)](Il, -IlO)S"22 -2(k,llo-koll,)}/b"

hi [2[3(k,-ko)-(Il,-llo)](Il,-llo)S22I,-2(k,llo-koll,)}/b"

d , [ - 2[3(k I - ko) - (Ill - llo)](Il, - IlO)(S'22 , +S'233) +2(3ko-llo)llo

- 2(k IIlo +k"p,) -21l, (ko- Iln) }/b
"

('I = -I, (25"'3 + III ~Iln}

I, = - 1 (2S 1212 + _Il_o-),
PI-PO

hi = 2[51111(S2222+5"-i3)-2511125221I][3(kl-ko)-(IlI-llo)](PI-Po)

~ 2(1- 5 1111 -5'22' - S2233)(3ko- llo)Po

+ 2(51II I + 5 2222 + S22n)(k IIlo + koll l) + 4(51122 + S22I1 )(k IIlo - koll , )

+ (5" 22 + 5 2211 )(k I - PI) Ilo + 25II" PI (k 0 - 110 ),

which are associated with the perfectly bonded inclusions and, for the type-I debonding in Fig, I (a)

c, = (2[(3k n-po)Po -k,(ko+llo)](1-S"")}/h,,

g, = (2[(3k" - Iln)Po - k, (ko+ Pn)]SII22 + 2k, (k o - Ilo)} Ib"

h, = :2[(3k"-Il,,)Pn-k,(kn+llo)]52211}/h,,

d, = : 2[(3kn-11n)lln - k, (kn+ Iln)](1- 5 2222 - 5,m) + 2k, (ko+ Iln)} /h"

", = --1I(25n21+~I~IlO}

h, = 2[(3kn- Iln)Pn - k, (kn+ llo)][(1- SI III )(1- 5 22 ,2 - S2211) - 2S 1112 5'2I1]

+2(1- SIIII )k 2 (ko + Ilo) -25"llk2 (kn-Iln);

but for type-2 debonding in Fig, 1(b)

(A,2)

(A.3)
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c, = (2[(3k o- ,uo),uo - n2ko](l- 5, II ,) + 2n,ko}/b"

g, = 2[(3k o-,uo),uo -n,ko]5 1122 lb"

h, = 2[(3ko- ,uo),uo - n,kll ]5'211 Ib"

d, = 2[(3ko-,uo ),ull - n,ko](1- 5'222 -- 5 22 n )/b"

e, = 1/(1-25,31')'

I; = 1/(1-251212 ),

b, = 2[(3ko-,uo ),uo - n,ko][(1- 5"" )(1- 5 2222 - 52233 ) - 25'12,5'211]

- 2[( 1- 5 2222 - 5 nn )ko- 5'I2,,uO]n 2 .

For spherical inclusions, the above equation can be simplified to

+ (10vo(I - VII) -4)(1 + v, )],u,,ull + 2(1+ vll )(4- 5vo)(l- 2v, ),uz,} /b"

3(1- vo) "
g, = ---?-{(1-2vo)(1-5vo)(1+V,),ui+[4(4- 4vo-vo)v,

I-_vo

- 2(1 + 2vo- 5v6)],u,,u1l + (1 + vo)(1- 5v ll )(1- 2v, ),u6} Ib,

h, =g,

b, = 2(1 + vII)(4- 5vll )(1 + vJl,u; + (1 + vll )[(23 - 25v ll ) - 5(5 - 7vo)v, ],u,,uo

+2(1-2v,)(7- 5vo)(1 +vo),u6,

and, for the type-I debonding

c, = 5(1- vo)(7 - Svo)[4(1 +vo)(1- vil,uo - (1- vo),ud/b"

g, = - 5(1- vo)[4(1 + vo)(1- Svo)(l- vT),uo - (1- vo)(1 + 10vo),ud/b"

h, = - S(1-vo)[4(1 + vo)(1- Svo)(1-vT),uo - (1- vo)(1- 5vo),udlb"

d, = S(1-vo)[4(1 +vo)(4-Svo)(I-vD,uo-(1-vo)(7-Svo),u']/b2,

,[2(4-SVo) ,uo]
e, = -II ~-vo) + /<, -/<0 '

. ,[ 2(4-SVo)]
I, = I; 1- 15(1-v

o
) ,

but for the type-2 debonding

c, = S(I- vo)[(7 - Svo)Eo+ 2(4- Svo)E,]/b2 ,

g, = S(I-vo)(I-Svo)(E, -Eo)/b"

h2 = S(1-vo)[(1 + IOvo-15v6)E, -(1-Svll )Eo]/b"

d, ~ -10(I-v ll )[(4-Svo)(E, --Eo)]/b"

IS(1-vol
e, = - 7-Sv;'-'

. IS(1-vo)
1'=~7S-,

- Va

b, = 2{3(3-Svo)Eo-[S(1-v6)(I-Svo)+6]E,}.
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(A.4)

(A.5)

(A.6)

(A.7)


